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A numerical method of plasma simulation is described which allows one to simulate 
Vlasov plasmas with very few degrees of freedom. Linear effects can be simulated by 
an amount of information corresponding to less than 100 particles, nonlinear effects 
require less than 500 “particles” in one spatial and one velocity dimension. The method 
is based on replacing the intinite real eigenvalue spectrum of the free streaming terms 
of the Vlasov equation by a finite discrete spectrum. An imaginary damping term is 
artificially added to the eigenvalues, and, thus, recurrence effects are minimized. 

1. INTRODUCTION 

This paper deals with methods and techniques for an economical simulation of 
plasmas, which can be described by the Vlasov equation 

Y-(x, u, 0 
at + u -g + ; E(x, t) -g = 0. 

The characteristics of Eq. (1) are given by 

dx dv --0 
dt 

- e E(x, t). 
’ -&--WI 

It is a well known theorem that integration of the set of ordinary differential 
Eq. (2) is equivalent to the solution of the partial differential Eq. (1). Most of the 
plasma simulation has been done by integrating many thousands of the charac- 
teristics of Eq. (2) which are the particle trajectories. However, it should be 
remembered that the mathematical equivalence of Eq. (1) and (2) is numerically 
true only if a continuum of particle trajectories is simulated. If due to limitation of 
computer storage and time only a finite number of particles can be simulated, the 
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solution of Eq. (2) agrees with the solution of Eq. (I) to the zeroth order in the 
parameter (nhd3)-l, where h, is the Debye length and it is the number of simulated 
particles per unit volume. 

Good results are obtained when about IO4 particles are used in one dimension 
(one coordinate in x and one in a). If we want to represent the distribution function 
in phase space in two dimensions (two spatial and two velocity coordinates) with 
similar accuracy we have to use (104)2 particles because only then does the phase 
space cube which is represented by one particle have the same length. This (ideal) 
requirement cannot be satisfied by existing computers, and, consequently, simu- 
lations in more dimensions cannot claim as high an accuracy as in the one dimen- 
sional case. Introduction of a magnetic field complicates the situation somewhat, 
and it will not be discussed here. In any case it is meaningful to study methods 
which might reduce the number of “particles” or rather degrees of freedom with 
which we describe a plasma and yet preserve the physical relevant effects which we 
want to simulate. 

The particular difficulty with the Vlasov equation is that it tends to develop 
filaments in time; superimposed over a relatively smooth part of the distribution 
function is another part with an ever increasing slope in the v-direction. This has 
been described by Armstrong, Harding, Knorr, and Montgomery [I]. In difference 
schemes of the Vlasov equation the filamentation causes an early deterioration 
of the simulation [2]. If a Hermite polynomial representation of velocity space is 
used, the filamentation causes recurrence phenomena due to the cutoff of an infinite 
matrix [3]. If a particle simulation is used the filamentation manifests itself in 
large fluctuations and stochastic noise [4]. 

If it were possible to suppress the filamentations which have been shown to 
contribute little to the macroscopic quantities like density, electric field, and energy, 
it might be possible to do plasma simulation with less computational effort. This 
would not only help to make computations cheaper but would also allow us to 
simulate more complex situations and to do plasma simulation in three dimensions. 

A particle simulation of plasmas is essentially a statistical description of the 
distribution function; its values are defined by the number of particles in a represen- 
tative unit of phase space volume. Such a description is not very efficient because 
one has to store N particles in order to describe one value of the distribution 
function with error of N-li2. 

If transform methods are used to solve Eq. (I), a representation in spatial Fourier 
modes has been used earlier [5]. However, the product E(x, t) . af(x, u, t)/au in 
Eq. (1) is then converted into a convolution sum, which increases the computational 
effort considerably. This has been realized by Nuehrenberg [6] who designed a 
code which utilized configuration space but transformed velocity space. The 
difficulty of an appropriate cutoff in velocity space which gets rid of filamentation, 
but keeps the important parts of the distribution function, remained unsolved. 
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For the case of Hermite functions the problem of cutoff has been investigated by 
Joyce, Knorr, and Meier [3]. It has been found that a continuous eigenvalue 
spectrum is transformed into a discrete finite spectrum by the cutoff procedure. A 
prescription for the cutoff procedure has been given which attributes an imaginary 
damping decrement to the eigenvalues and, thus, practically eliminates recurrence 
effects. No effort, however, was made to use this result to construct an efficient 
plasma simulation code. Considerations for such a code are presented in the 
following. The objections raised by Nuehrenberg against the use of parabolic 
cylinder functions still remain valid; we have to expect a slow convergence to the 
correct solution with the number of Hermite polynomials used. But no other set of 
classical orthogonal functions possesses such a simple expression for the derivative 
of a polynomial. At least at this stage of the development of the code, this argument 
outweighs the disadvantages of the Hermite polynomials. 

The outline for the rest of this paper is as follows: in Section 2 we derive a 
Hermite representation which minimizes the number of operations; Section 3 is 
devoted to stability questions; Section 4 discusses initialization procedures; and 
Section 5 presents questions concerning the nonlinear force term. Section 6 presents 
results of the method. Finally, a summary and the conclusions are found in 
Section 7. 

2. REPRESENTATION IN TERMS OF HERMITE POLYNOMIALS 

Similar to Ref. [l], we represent the v-dependence of the distribution function by 
a series of orthogonal polynomials 

As mentioned, the orthogonal set of polynomials used is essentially arbitrary. 
Recently Lewis [7] used nonclassical polynomials for a somewhat similar problem. 
Constant factors h have been added in Eq. (3). They are arbitrary and will be 
adjusted for a maximum of numerical convenience. Inserting ansatz [3] into 
Eq. (1) results in 

h- yf& b, + & bv-1 y + 5 bv+l h+dv + 1) 
Y h ” 

- E(x, t) b,-, 9 = 0. (4) 
Y 

We adjust the h, in such a way as to make the two coefficients h,-,/h, and 
(V + l)/h,/h,+l equal. Then the equation will contain only one coefficient 

pv = b/h, , 
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which is efficient for numerical speed. For the thus defined py the recursion relation 

p”p”+l = v + 1 

holds, and Eq. (4) becomes 

4(x, 1) + P” [-& (k-1 + b”,l) - ax, t> Ll] = 0. (5) 

The choice of p,, is arbitrary. A convenient choice is p,, = 1. Similarly we choose 
h, = 1 which entails h, = 1, h, = 3, etc. 

Sometimes it is convenient and enhances numerical accuracy if the distribution 
function is split into a homogeneous part and a perturbation, similar to the 
analytical approach to the linearized Vlasov equation. We put 

f(x, v, 4 =.f&> +f& v, 0 
with 

and 

(6) 

~foo(~) - 
i3V 

& jYo c,h,-lfk,(v) exP(- +“)* 

We then obtain, instead of Eq. (5), 

4 + pv [& (h-1 + bv,,) + EL - G,] = 0. (8) 

(7) 

For example, we choose 

fb = (2~r)-l/~ exp( -&v2), 

and find c, = --6,” , 6 being the Kronecker symbol. 
For the distribution which is subject to a two-stream instability, 

1 + Bu” 
hW = PY1’2 1 + p exp(- W), 

we obtain c1 = -1, c, = 2/3/(1 + /I), and all other coefficients equal to zero. 
The systems (5) or (8) are infinite and cannot be handled by a computer. If they 

are truncated by setting b,.&, t) = 0, the nature of the system is radically changed, 
as pointed out in Ref. [3]. If we set E = 0 for the moment, decaying solutions of 
Eq. (1) become almost periodic solutions of Eq. (5) because the continuous eigen- 
value spectrum of Eq. (1) is replaced by a discrete, finite number of eigenvalues of 
the truncated system. 
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This can be seen easily. With 

b,(x, t) = (-i>” a, exp(ikx + At), 

system (5) is transformed into the algebraic system 

Aa, + b%(-G-l + a,,,) = 0. 

We put a, = {,H, , where cy/cy+l = ipy , and obtain 

H v+l = - + H, - vH,-, , 

169 

(9) 

This is the recursion equation for Hermite polynomials. Thus, 

H, = He, - $- , 
( 1 

He,(x) being a Hermite polynomial [8]. 
The system is finite if He,(-iA/k) = 0 or A, = ikuUN, where the aUN are the 

zeros of the Nth Hermite polynomial with p = I, 2, 3,..., A? 
In order to make the solutions of the truncated system more similar to the true 

solution of Eq. (I), we require that all eigenvalues A, have a negative imaginary 
part. This is equivalent to the condition 

HeN -iV+i4 =. 
k 1 , 

which can be rewritten as 

HeN (*) = - g ($-)” (7) HeN-l ($). (12) 

In an infinite matrix a disturbance would simply travel to higher and higher 
indices. The “boundary condition” (12) avoids that a disturbance reaching the 
boundary of the truncated matrix suffers a reflection, and returns to the lower 
indices which represent macroscopic quantities, unabatedly. Rather the disturbance 
interferes with an art@icially created image which causes an exponential decay of 
the original disturbance. 

We make use of Eq. (12) to damp the filamentation of the Vlasov equation. 
With Eq. (10) and (9) we can rewrite Eq. (12) as 
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and, with the aid of relation (9), we obtain for the b’s 

bN = - 5 9 i-lbNMl , 
I=1 

(14) 

where 

ON-Z = (-A>" (7) (P&l, PN-2,*.*, pd-l. 

For sufficiently small h the first few terms in the sum will already give a good 
approximation to b,,, . Let us assume that the first A4 terms suffice. Then 

(ik)M bN = - f (ik)‘+’ q.,--lb,.,--l. 
Z=l 

(15) 

Going from the k into the x-representation, we find the following differential 
equation for b, : 

bjvM’(x, t) = - ; a,,bj.fYfy’) E g(x). 
z-1 

(16) 

The upper index in parenthesis characterizes the order of the derivative. This 
equation can easily be solved using a fast Fourier transform. 

The question arises: What will happen if M, the number of terms in Eq. (16), is 
chosen too small. How will the damping of the different eigenvalues be affected ? 
Computer experiments showed that the damping decrements of the different 
eigenvalues will deviate from their assigned value h, some of them towards smaller 
damping. Thus, the recurrence effects will be increased. Under ordinary circum- 
stances, however, 8-10 terms suffice to keep the deviation below a few percent. 

The propagation of a disturbance along the columns of the matrix is similar to 
the propagation of an electromagnetic wave along a telegraph line. We can ask 
for the speed of propagation and, in particular, calculate the time after which a 
reflected disturbance appears again at the low-index side of the matrix. 

A one-to-one correspondence of the Hermite polynomials with the terms in the 
power transform had been established in Ref. [3]. The speed of a disturbance along 
the y-component of the characteristic function is clearly 

dy z = k. (17) 

One term of the power transform (compare Ref. [3, Eq. (13)]) 

Y” exp(--W> 
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has its maximum at yllz. Therefore, u,(t) takes on its maximum approximately 
when 

$I2 - kt = 0. 

Considering v for the moment as a continuous parameter we obtain for the velocity 
V, along the v-index of the b-matrix 

v Y =T 2kvW. (18) 

The velocity increases for larger v and is proportional to the wave number. The 
recurrence time follows as 

TR = 2N1i2/k, (19) 

when N is the number of Hermite polynomials. 
An example for the damping of the recurrence effect is shown in Fig. 1. The 

LW STEP 

LWSTEP - 

i 

10-3 ti 
0 I 2 3 4 5 6 7 8 9 IO II 12 13 14 15 I6 17 

TIME 

FIG. 1. The successful damping of the recurrence when integrating Eq. (1) with E = 0 using 
a matrix of ten Hermite polynomials and eight points in x space. The initial decay is proportional 
to exp( -&kV). The recurrence at t = 10 is reduced to 2% of the original amplitude, due to a 
cutoff of the form Eq. (20). Putting b,,(x, t) - 0 would have resulted in a recurrence comparable 
with the initial amplitude. The initial condition is f(x, u, 0) = (24-1/Z exp(-+a*) cos kx, with 
k = 4. 
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initial parabolic decay for 0 < t < 6 on an exponential scale is what one expects 
for the free-streaming exact solution. After t = 6 the solution grows again and 
reaches about 2 % of the initial value at t = 10. 

3. STABILITY OF FINITE DIFFERENCE SCHEME 

The system (5) is hyperbolic. A recent comparison of the available difference 
schemes for hyperbolic equations by Morton [9] has shown that the leapfrog scheme 
is superior to first order, Lax-Wendroff and Crank-Nicolson schemes. The modes 
have no damping and the phase representation is better than that of the other 
schemes. In addition, it is fast. A disadvantage is that the leapfrog method contains 
a parasitic mode of propagation which is also not damped. 

We investigate now the stability of the leapfrog scheme when applied to Eq. (5) 
with E = 0. With 

0 
b = (b, , b, ,...) and R= ~1 

i 
cw 

. . . 

we write the free streaming part of the system (8) as 

+ -R$. 

The centered difference scheme is 

b”+‘(j) _ b”-l(j) = - $ R[b"+lP(j + =&) - bnf1i2(j - 81. (21) 

Considering normal modes, b”(j) = b” exp(ikj dx), this becomes 

jp+l = bn-1 - 2i -.$ sin(&k Ax) Rbn+lP. (22) 

As the leapfrog method is equivalent to a two-step method, we have to write 
Eq. (22) also for the time step (n + 3/2). 

be+312 = b"+1/2 _ iaR . b"+l, 

where a = 2 At/Ax sin gk Ax or using Eq. (22) 
bn+3/2 = 0 - a2R2) bn+ll2 - jaRbn. (23) 

In order to diagonalize R we multiply Eqs. (22) and (23) on the right with the 
polar matrix P of R and on the left with P-l and make use of the relation 

P-lRP = A, Aij = hi tiij . 



PLASMA SIMULATION WITH FEW PARTICLES 173 

The Xi are the eigenvalues of R. Equations (22) and (23) are transformed into 

(,::;2) = G * (c:l:/2) (24) 

with 

G = (& 1 Iyjj2 ) 

and c = P-lbP. G is the amplification matrix. To find the eigenvalues we multiply 
the first row of the determinant 11 G - IA 11 with iah and add it to the (n + 1) row, 
which has been multiplied with (1 - A). The determinant, thus, becomes triangular, 
and we obtain 

11 G - IX I/ = fi (1 - 2X + a2Xy2X + h2) = 0. (25) 
v=l 

The solution is 

h = 1 - ga2X,2 f iah,(l - $a2h,2)1/2. 

h lies on the unit circle if ta2X,2 < 1. The condition for stability is, therefore, 

g- < I AN I-l, V-9 

where AN is the largest eigenvalue of R. 
We can write the solution of Eq. (24) as X = exp(f ix) with sin x = iaX, as one 

can easily corroborate by insertion. It follows that A, must be real, otherwise one of 
the two solutions will necessarily lie outside the unit circle and the system will be 
unstable. This remark becomes important if we include in Eq. (20) the damping 
of the solutions due to the “boundary condition” (16), by adding time symmetric 
terms. This corresponds in the stability analysis to making the eigenvalues of R 
complex and our difference scheme will always be unstable. 

However, if the last row of the matrix is not taken at time step (n + 4)), but at 
the time step n, the resulting system has stable solutions. In addition, this choice 
keeps the system explicit. The order of the damping term is now of first order in dt 
only. But the damping term has been introduced artificially anyhow, so this cannot 
be considered of any importance. 

The stability analysis with damping terms becomes quite involved. Only for a 
2 x 2 matrix 

a 
Yl = ax Y2 2 

$2 = 6~1 - dy,, 
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the calculation could be done explicitly, and we find that the stability limit is given 
by 

Atd < 4 [I - (+g]. 

Thus, the damping decrement determines the stability limit in addition to dt/dx. 
Qualitatively similar observations have been made for the general case of N 
equations. 

4. INITIALIZING OF THE LEAPFROG SCHEME 

The two-level leapfrog scheme has to be initialized properly. Ideally the ini- 
tializing procedure should make the amplitude of the parasitic mode exactly zero. 
However, it appears that this is impossible without a fairly complex iteration 
procedure. Thus, a two-level Lax-Wendroff scheme was designed which accom- 
plished an initialization of second order in dt. 

Even with a second-order initialization it was observed that the two levels of the 
leapfrog scheme tended to drift apart. An averaging of the two levels can be done 
in a simple way only to first order in At. As the Lax-Wendroff scheme was available 
from the initialization it was used to initialize the leapfrog scheme continuously 
after a number of time steps before the drifting of the two meshes becomes apparent. 
In actual runs the Lax-Wendroff initialization was repeated every 20,40, or 80 time 
steps, depending on the magnitude of the time step. This procedure is not difficult 
to implement and gives satisfactory results. 

5. THE FORCE TERM 

When the electric field is included the second-order difference scheme takes the 
following form: 

by”“(m) = by”(m) - pv g (qb;y(m) + b,“,:1/2(m)] 

+ Ax En,-1~2(m)[~(m) + 8J) = 0, 
(27) 

b;+3/2(m + 4) = byn+l12(m + 9) - y Ax ,, .J!! @[bn+l(m + 1) + bnfl(m + I)1 
v-1 u+l 

+ Ax E”+l(m + &)[E(m + 4) + 8J = 0. 



PLASMA SIMULATION WITH FEW PARTICLES 175 

The operator 6 is defined by 

6b(m) = b(m + :) - b(m - 4). 

Poisson’s equation becomes 

E n+l/@ + 1) - E”+1’2(m) = dx b;+1’2(n~ + 4). @3) 

A tilde over a quantity indicates that the quantity is not directly available but must 
be approximated, e.g. 

bm = $-[b(m + i) + b(m - +)I. 

The stability properties of the system do not seem to be affected by the addition 
of the force term. 

We discuss now the physical conservation theorems and how they are represented 
in the difference scheme. The conservation of mass follows from the first equation 
of system (27). We obtain 

G bt+l(rn) = c b,‘+n). 
m m 

(29) 

From the second equation we obtain 

c b:+‘(m) = c b?(m) + dx z En+1’2(m) +[b,“f”2(m + 4) + bzf1’2(m - a)]. 
m m. 

The momentum is constant if the last term vanishes. But using Eq. (28) we can 
write 

C E”““(m)[b~“‘“(m + &) + bn+1’2(m - &)] 
WL 

lc =z, 
En+112(m)[En+l/2(m + 1) - En+lj2(m)] 

+ & C En+1/2(m)[En+1/2(m) - En+1/2(m - l)] = 0. 
m 

For the energy no exact conservation has been found from Eq. (27). 
Nuehrenberg [6] used in his scheme the Maxwell equation and derived a simple 

prescription to obtain energy conservation. We tried the same here and obtained 
exact energy conservation. However, the momentum was no longer conserved 
which lead eventually to an instability. This approach was, therefore, abandoned. 
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6. RESULTS 

The ideas elaborated in the preceding sections have been incorporated into a 
code which is correct to fourth order in dx and second order in dt. The following 
examples have been studied: (a) almost linear Landau damping, (b) nonlinear 
Landau damping, and (c) the symmetric two-stream instability. 

A typical case for the behavior of the electric field for almost linear Landau 
damping is shown in Fig. 2. The initial condition is 

f(x, 24 0) = (27r)-+ exp(-&P)(l + A cos kx) (29) 

with A = 0 and k = 0.1. A stable standing wave is produced. The initial amplitude 
is still large enough that the damping decrement decreases until about t = 20 in 
dimension less units of (w&l. This behavior is familiar from earlier work [l, 21. 
The integration was run until t = 80 and from t > 20 on the Landau damping 
was constant. No sudden blow-up was observed which could be compared with 
Lewis’ [7] method, because all the recurrence phenomena were sufficiently damped. 
Also plotted is the second harmonic. It exhibits beat-like oscillations on a time 
interval of 10. This is due to recurrences. From Eq. (18) follows that disturbances 
from higher modes travel faster along the matrix and they are less damped when 

0 5 IO 15 20 25 30 

TIME T 

FIG. 2. Almost linear Landau damping for an initial condition f(x, U, 0) = (27r)-‘j2 exp 
(-S@)(l + A cos kx) with A = 0.1 and k = 0.5. The amplitude is still large enough so that 
the damping decrement decreases in time, ~ mode k = 0.5, - - - - mode k = I. 
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they recur. Energetically this is irrelevant because the second mode is almost 
always one order of magnitude or more less than the first mode. This simulation is 
equivalent to the use of 480 “particles” as far as storage is concerned. 

Reducing the amplitude A in Eq. (29) results in strictly linear Landay damping. 
It can successfully simulated with this code with as few as 80 particles. 

The effect of increasing the initial amplitude A to A = 4 is shown in Fig. 3. 

IO51 ’ ’ ’ ’ ’ ’ ’ ’ ’ 1 
0 5 IO 15 20 25 30 35 40 45 50 

TIME T 

Fm. 3. Strongly nonlinear Landau damping for the same initial condition 
withA=O.Sandk=O.S,-modek=OS,---- 

as in Fig. 2 but 

After a much stronger damping than according to the linear theory and a decay by 
roughly 14 orders of magnitude the amplitude grow again. This effect has also been 
observed earlier [6, lo]. Again we observe in the second mode a recurrence 
maximum at t w 15, which might have caused some distortions of the solution 
because it is comparable with the first mode. The first mode settles at a fairly 
constant level, contrary to the case of Nuehrenberg which shows a sudden decay 
after t = 40. In Nuehrenberg’s case this is just the time after which uncontrollable 
and unphysical disturbances which enter through the open boundaries of his 
transformed velocity space can influence the electric field. We have collected 
computational parameters of the cases discussed here. Compared with the other 
cases the energy conservation is relatively bad. This is due to the fact that only 
eight points in x have been used. This simulation corresponds to the use of 240 
particles. 
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Finally we consider the symmetric two-stream instability with the initial condition 

f(x, u, 0) = (23~)-'/" u2 exp(-$v2)(1 + A cos kx) 

with a = 0.05 and k = 4. A typical solution is shown in Figs. 4a and 4b. This 
instability has been studied by Denavit and Kruer [I1 J, who compared particle 
codes with Vlasov codes. Figure 4a gives the magnitude of the first two modes as 
a function of time. Initially there is a mixture of several solutions of the linear 
dispersion equation. It follows that the exponential growth, saturation, and slower 
oscillations of the electric field are due to the trapping of particles. In Fig. 4b the 

4801 

L 
= iLI 400 

5 
320 

/ ‘\I\;.,;.\; 

Ld 
? 40 

I I 

/ 6” I 

0.80 b /; 

ooo- 
I 

0 5 IO I5 20 25 30 35 40 50 45 

FIG. 4. A two-stream instability with the initial condition f(x, V, 0) = (2~)-~/~ u2 exp(&?) 
(1 + A cos kx) with A = 0.05 and k = 4. (a) Logarithmic plot of the electric fields for the modes 
k = a and k = 1. The first mode is always larger than the second. (b) Plot of the total energy 
versus time. The units are the same as in Ref. [l]: length in h, , time in w;:, velocity in otherma . 
In the figure, ten times the electric energy per unit length is plotted. 

total electric energy is plotted linearly in time. This plot has all the physical features 
of Fig. 3 of Ref. [ll]. It has been obtained with a remarkably small number of 
degrees of freedom, namely 480. The unoptimized code required 2 min 18 set on an 
IBM 360/65 computer. We do not claim a comparable accuracy as Denavit and 
Kruer, but we want to demonstrate only that our method yields meaningful 
physical results with a minimum of information stored in the computer and very 
reasonable computation time. A substantial reduction of the number of degrees of 
freedom will reduce computation time for a 2D code because of the scaling laws, 
even if there may not yet be such a reduction in the ID case. 
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7. DISCUSSION 

We have shown that familiar nonlinear effects can be reproduced from an inte- 
gration of the Vlasov equation with a code which utilizes some new principles. 
The important feature is not that nonlinear effects can be recovered but that the 
computational effort is quite low. 

Phase space is represented in our method by N points, which we call “particles” 
because they require the same storage as a particle code with N particles. We are 
able to run this code with less than 500 particles. The computation time per particle 
is of the order of 250 psec for an unoptimized FORTRAN code on a IBM 360/65. 
This is comparable with the time for similar particle codes. Appreciable savings in 
computer time and cost are accomplished. This makes two-dimensional plasma 
simulation cheaper and more complicated situations can be simulated. 

On the other hand, three-dimensional plasma simulation becomes more feasible 
with more economical codes. According to an estimate by Gazday, Canosa, and 
Armstrong [12] three dimensional plasma simulation will be possible in 1984 if an 
assumed extrapolated increase in computer speed and storage capacity materializes. 
The authors did not consider new principles and methods which might make 
feasible simulation in three dimensions at an earlier date. 

What further improvements can be expected which would further increase 
the speed of the code ? In paragraph 3 it was reported that the cutoff damping terms 
inlluence the stability behavior. Sometimes this is inconvenient because it makes the 
time step quite small for a given amount of damping. Preliminary experiments 
indicate that this problem can be solved by an impicit scheme. 

Another inconvenient limitation is the dependence of the time step on the largest 
eigenvalue according to Eq. (26). If the number of Hermite polynomials is increased 
a smaller time step is required simultaneously. This restriction might be removed 
by using a different orthogonal system of polynomials over a finite interval. 
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